BGS SCIENCE ACADEMY & RESEARCH CENTER Agalagurki, Chikkaballapura

IV Semester B.Sc., Chemistry Laboratory Manual

CONTENTS

- **1.** Systematic procedure for the qualitative analysis of a salt mixture Containing two acid and two basic radicals.(**10** experiments)
- 2. Separation of Fe²⁺ and Mg²⁺ from a mixture by Solvent Extraction method.
- 3. Estimation of C.O.D. in the given sample of effluent.

SYSTEMATIC PROCEDURE FOR SEMI-MICRO QUALITATIVE ANALYSIS OF INORGANIC SALT MIXTURES CONTAINING TWO SIMPLE SALTS

The scheme of analysis of salt mixture involves mainly the following steps

1. Preliminary tests, 2. Detection of acid radicals 3. Detection of basic radicals 4. Systematic report

1. Preliminary tests:

- a) Physical state: Solid
- b) Appearance: Crystalline/amorphous

c) Color:

d) Solubility: The solubility to be tested with various solvents first with cold and then with hot condition in the following order of solvents: i) water, ii) dil.HCl iii) dil.HNO₃ iv) con.HNO₃

<u>2. Detection of acid radicals</u> The acid radicals are classified into three groups given below based on rection with the group reagent

Group No.	Group reagent	Radicals
I	Dil. HCl acid	Carbonate(CO ₃ ²⁻), Bicarbonate(HCO ₃ ⁻)
11	Con. H ₂ SO ₄	Chloride(Cl ⁻), Bromide(Br ⁻) Nitrate(NO ₃ ⁻)
111		Borate(BO ₃ ³⁻), Phosphate(PO ₄ ³⁻) Sulphate(SO ₄ ²⁻)

Detection of I group acid radicals:

Experiment	Observation	Inference
Salt mixture+ dil.Hydrochloric acid in a semi-micro test tube, Nature of the	Brisk effervescence	I group acid radical is Present
evolved gas is observed.	It is colorless odour less gas	May be carbonate or bicarbonate

Test for carbonate/bicarbonate Salt mixture + dil.HCl, the evolved ed gas is passed through a test tube containing lime water	Lime water turns milky	Carbonate or bicarbonate is present
<u>Confirmatory tests</u> : Salt mixture+ water, the contents of the test tube is boiled, the evolved gas is	i) Lime water turns milky	Bi-carbonate is confirmed
passed through a test tube containing lime water	ii) Lime water does not turn milky	Carbonate is Confirmed

Detection of II Group Acid radicals

Salt mixture is taken in a dried test tube		II group acid radicals
+ Con. Sulphuric acid	Vigorous reaction	are present
(5 drops)		
If no reaction takes place in cold, the	i) Colorless fuming gas	May be chloride
test tube is heated,	ii) Reddish brown fumes	May be bromide
Nature of the evolved gas is observed	in cold	
	iii) Reddish brown	May be nitrate
<u>Tests for Chloride(Cl⁻)</u>	fumes on heating	
Salt mixture + Con. Sulphuric- acid, a		
glass rod dipped in amm- onium		
hydroxide solution is exposed to the out	Dense white fumes	
coming gas.		Chloride is present
Chromyl chloride test		
(ConfirmatoryTest for chloride		
Salt mixture+ potassium dichro-mate		
crystals are taken in a dry test tube +		
$Con.H_2SO_4$, the contents are heated, the		
red vapours evolved is passed into a		
test tube containing water + NH_4OH +	Bright yellow	
acetic acid + lead acetate, shaken well.	precipitate	
		Chloride is confirmed

Test for Bromide(Br):		
Salt mixture+Con.sulphuric acid		
Confirmatory test for Bromide	Reddish brown fumes	Bromide is present
(Globule test): Salt solution + Carbon		
tetrachloride + 10 drops of chlorine		
water, shaken well	Orange red globule	Bromide is confirmed

Test for Nitrate(NO ₃) Salt mixture + copper turnings + Con.sulphuric acid, the contents are heated.	Intense reddish brown fumes	Nitrate is confirmed
Confirmatory test for Nitrate (Brown ring test): Salt solution + Freshly prepared ferrous sulphate soln.(if precipi-tate appears,centrifuged. To the filtrate, con.sulphuric acid is added along the sides of the test tube slowly.	Brown ring is formed at the junction of the two solutions	Nitrate is confirmed

Detection of III Group Acid radicals

Test for Borate(BO ₃ ³⁻)		
Salt mixture+ 10 drops of con.		
Sulphuric acid + ethyl alcohol		
heated, the vapours coming out	Vapours burns with	Borate is confirmed
of the test tube are ignited	Green edged flame	
Test for Phosphate(PO ₄ ³⁻)		
Salt solution + con. Nitric acid heated,	Bright yellow precipitate	Phosphate is
cooled + 1ml of ammon- ium molybdate		Confirmed
solution		
Test for Sulphate(SO ₄ ²⁻)	White precipitate	
Salt solution+dil.HCl acid + Barium		Sulphate is present
chloride solution.	White precipitate	
To the above mixture excess of	is insoluble	
dil. hydrochloric acid is added.		Sulphate is cofirmed

III. DETECTION OF BASIC RADICALS

<u>Preparation of original solution</u>: About 5-10mg of the salt mixture treated with the following solvents first in the cold condition and later in hot condition. 1.Water 2. Dil.HCl 3) Dil.HNO₃. About quarter a test tube of the solvent + salt mixture in small portions with shaking to get a saturated solution(O.S). The following table gives the classification of the basic radicals into various groups based on its reaction with the group reagent.

Group No.	Group Reagent	Radicals	Composition of the precipitate	<u>Color of the</u> Precipitate
I	Dil.HCl	Pb ²⁺	PbCl ₂	White
II	Dil.HCl + H ₂ S*	Bi ³⁺ Cu ²⁺ Cd ²⁺	Bi ₂ S ₃ CuS CdS	Brown Black Yellow
111	NH ₄ Cl(s) + NH ₄ OH(excess)	Fe ²⁺ Fe ³⁺ Al ³⁺	Fe(OH) ₂ Fe(OH) ₃ Al(OH) ₃	Green Red. Brown Gel.white
IV	NH ₄ Cl(s) + NH ₄ OH(ex) + H ₂ S*	Zn ²⁺ Mn ²⁺	ZnS MnS	White Buff
V	NH ₄ Cl(s) + NH ₄ OH(ex) + (NH ₄) ₂ CO ₃	Ba ²⁺ Sr ²⁺ Ca ²⁺	Ba CO₃ Sr CO₃ Ca CO₃	White White White
	*Thioacetamide solution in water can be used instead of hydrogen sulphide	NH4 ⁺ Mg ²⁺ Na ⁺ K ⁺	 	

Notes:

1. About 1ml of the original solution is used for each group tests.

2. If precipitate is found in any group test of basic radicals, the precipitation must be done by adding reagent of that group to the remaining part of the original solution for complete precipitation and centrifuged. The above precipitate is to be used for that group and the clear centrifugate is used for subsequent group analysis.

3. If the previous groups are absent then use directly the O.S. or salt mixture.

4. Since the test for ammonium radical is carried out directly with the salt mixture and also the presence of other metal ions does not interfere with its test, it is carried out in the beginning of the analysis of basic radicals

5. Liquor ammonia can be added slowly instead of ammonium hydroxide till the solution smells ammonia.

6. For II and IV group analysis Thio-acetamide solution in water or sodium sulphide solution can be used instead of hydrogen sulphide.

Experiment	Observation	Inference
TEST FOR AMMONIUM RADICAL(NH ₄ ⁺) 5-10mg of the salt mixture + 1ml of NaOH solution, the contents of the test tube is heated	Pungent odoured gas is liberated	VI Group basic radical is present May be Ammonium
A moist red litmus paper is exposed to the out coming gas <u>Confirmatory test for NH4</u> ⁺ <u>Nessler's reagent test :</u>	Red litmus turns blue	radical Ammonium radical is present(NH ₄ ⁺)
10mg of the salt mixture + 1ml of sodium hydroxide solution,boiled and the vapours are passed into a test tube containg Nessler's reagent	Reddish brown precipitate	Ammonium is Cofirmed(<u>NH</u> ₄⁺)

<u>Ionic Reaction:</u> $NH_4^+ + 2[HgI_4]^{2^-} + 4OH^- \rightarrow HgO.Hg[NH_2]I + 7I^- + 3H_2O$ Red.brown ppt.

Detection of I Group Basic Radicals

1 ml of the original solution + 1ml of dil HCl in excess	White precipitate	I group basic radical is present
Residue(Ppt.) Centrifuge: Centrifugate(separa- ted and used for further groups) Above group residue + 5ml of Water, boiled and cooled. Above hot solution is divided into two parts and tested as follows:	Residue dissolves in hot condition and reappears on cooling	Pb ²⁺ is present
		Pb ²⁺ is confirmed
<u>Confirmatory tests for lead</u> <u>1. Potassium Chromate test:</u> I part + acetic acid +Potassium Chromate solution.	Bright Yellow Precipitate	
2. Golden yellow spangles test II part + 1ml of potassium iodide solution, the yellow precipitate obtained is dissolved in excess of water and boiled, the contents are cooled under the tap slowly.	Bright Yellow Precipitate Golden Yellow Spangles	Pb ²⁺ is confirmed

<u>Ionic reactions</u>: 1. $Pb^{2+} + CrO_4^{2-} \rightarrow PbCrO_4$ 2. $Pb^{2+} + I^- \rightarrow PbI_2$

Detection of II Group Basic Radicals

About 1ml of the above group		
centrifugate(or original solution	Colored precipitate	II group basic
if I group is absent) + dil HCl +H ₂ S gas is		radical is present
passed or thioacetamide solution(if no		
precipitate is observed, make sure by		
diluting with 2-3 drops of water).	i) Black precipitate	May be Cu ²⁺
Color of the precipitate is	ii) Dark brown precipitate	May be Bi ³⁺
observed	iii) Yellow precipitate	May be Cd ²⁺
Residue(Ppt.)	(on dilution)	
Centrifuge:		
Centrifugate(separa		
ted and used for further groups)		
Above group residue + 10 drops of		
yellow ammonium sulphide +NaOH		
solution, heated.	Precipitate remains	II 'A' groups basic
Above step residue + 1ml of dil.Nitric		radical is present
acid, heated.	Precipitate dissolves	May be Bi ³⁺ , Cu ²⁺
Above step clear solution dil.H ₂ SO ₄ +		or Cd ²⁺
Ethanol, gently stirred.		
	No change	lead is absent
Confirmatory test for Bi ³⁺ : Above step		
residue + 4 drops of	Precipitate dissolves	
Con.HCl, clear solution + NaOH		
+ Stannous chloride solution	Black brown precipitate	Bi ³⁺ is confirmed

Con.HCl, clear solution + NaOH		
+ Stannous chloride solution	Black brown precipitate	Bi ³⁺ is confirmed
Confirmatory test for Cu ²⁺ :(If the		
solution is blue then only this test is		
performed)		
Above step blue colored solu-		
tion + acetic acid + potassium		
ferro-cyanide solution	Chocolate brown precipitate	Cu ²⁺ is confirmed
Confirmatory test for Cd ²⁺ :		
Above step clear solution+3 drops		
of water + H ₂ S gas is passed or	Yellow precipitate	
thioacetamide solution, warmed		Cd ²⁺ is confirmed

Ionic reactions: i) $Bi^{3+} + 3OH^{-} \rightarrow Bi(OH)_{3}$ (White Ppt) ii) $2Cu^{2+} + [Fe(CN)_{6}]^{4-} \rightarrow Cu_{2}[Fe(CN)_{6}]$ (Chocolate brown ppt) iii) $Cd^{2+} + S^{2-} \rightarrow CdS$ (Yellow ppt.)

Detection of III Group Basic Radicals

Centrifugate from II group is boiled off to		
o o 1		
expel off all H_2S , 2drops of con.HNO ₃ or		
1ml of salt		
solution if the first two groups are	Precipiate is obtained	III Group Basic
absent + solid NH ₄ Cl till saturated		Radical is present
+excess of liquor ammonia till it smells	i) Gelatinous white	May be Al ³⁺
sufficiently	ii) Dirty green	May be Fe ²⁺
Color and nature of the precipitate is	iii) Reddish brown	May be Fe ³⁺
absorved	,	- ,
Centrifuge:		
Contrifugo:		
Centrifuge: Centrifugate(separa-	i) Custon an us delich hussing	$() $ N ($a_1 + b_2 = a_2^{2+} / a_3^{3+}$
	i) Green or reddish brown	i) May be Fe ²⁺ / Fe ³⁺
ted and used for further groups	precipitate	
Above group residue + Excess		
of NaOH solution, shaken well.	ii) Clear solution	ii) Al ³⁺ is present

Confirmatory test for Al ³⁺ :		
Above clear solution + Solid amm		
ammo-nium chloride, shaken well and	Gelatinous white precipitate	Al ³⁺ is confirmed
boiled and cooled		
Confirmatory test for Fe ²⁺ :		
Above step residue + 10 drops of Dil.HCl		
+ 10 drops of Potassium Ferricyanide	Deep blue precipitate	
solution		Fe ²⁺ is confirmed
Confirmatory test for Fe³⁺:		
Above step residue + 10 drops of Dil.HCl	Deep blue precipitate	
+ 10 drops of Potassium ferrocyanide		Fe ³⁺ is confirmed
solution		

Detection of IV Group Basic Radicals

Centrifugate from the above group(or original solution if the		
above groups are absent) + Solid NH_4Cl +		
Excess of liquor ammonia + H_2S gas is passed or thioacetamide solution and	Precipitate is formed	IV group Basic Radical is present
warmed	i) Dull white er white	Maybaring
Color of the precipitate is observed Residue(Ppt.)	i) Dull white or white ii) Buff	May be zinc May be manganese
Centrifuge: Centrifugate(separa-		
ted and used for further groups)		
Above group residue + a few drops of dil. HCl, heated	Precipitate dissolves	May be Zn ²⁺ orMn ²⁺

Distinction be Zn ²⁺ and Mn ²⁺ :		
Above solution is boiled with 2		
drops of con. nitric acid to expel off all	i) Clear solution	Zn ²⁺ is present
H ₂ S + NaOH solution is added in	ii) Buff or brown	
dropwise and added in excess.	precipitate	Mn ²⁺ is present
Confirmatory test for Zn²⁺:		
Above clear solution + 5 drops of acetic		
acid + 5 drops of potassium ferrocyanide		
solution	White precipitate	Zn ²⁺ is confirmed
Confirmatory test for Mn ²⁺ :		
(Permanganic acid test):		
Above step flesh or buff precipitate +		
5drops of water + a pinch of lead		
peroxide + few drops of con.nitric acid,		
boiled for 3 mins with stirring, diluted	Pink coloration in the	
with water and allowed to stand for	supernatant portion of the	Mn ²⁺ is confirmed
some time.	liquid	

<u>Ionic Reactions:</u> 1. $Zn^{2+} + [Fe(CN)_6]^{4-} \rightarrow Zn_2[Fe(CN)_6](White ppt.)$

2. $2Mn^{2+} + 5PbO_2 + 4H^+ \rightarrow 2MnO_4^- + 5Pb^{2+} + 2H_2O$ (Pink)

Detection of V Group Basic Radicals

Centrifugate from IV group is boiled with 2 drops of con.nitric acid to expel off all H ₂ S(or Original solution if the above four groups are absent) + Solid NH ₄ Cl + excess of liquor ammonia + ammonium carbonate solution in excess. Residue(Ppt.) Centrifuge: Centrifugate(separated and used for next group)	White precipitate	V group Basic Radical is present
---	-------------------	-------------------------------------

		1
Above group residue is divided		
into two parts, one part of it is		
preserved to carry out flame test.		
Another part is dissolved in acetic acid		
and divided into 3 parts.		
Test for Ba ²⁺ : I part + potassium		
chromate solution.	i) Yellow precipitate	Ba ²⁺ is present
Confirmatory test:- Flame test	ii) Yellow solution	Ba ²⁺ is absent
Above step residue or II part of the V		
group residue + a drop of		
Con. HCl, flame test is conducted	Apple green colored flame	Ba ²⁺ is confirmed
Test for Sr ²⁺ : II part + Saturated	White precipitate	
ammonium sulphate solution.	No Precipitate	Sr ²⁺ is present
Confirmatory test:- Flame test		Sr ²⁺ is absent
Above step residue or II part of the V	Crimson red colored flame	
group residue + a drop of		Sr ²⁺ is confirmed
Con. HCl, flame test is conducted		
Test for Ca ²⁺ : III part + ammo-nium	White precipitate	
oxalate solution, shaken well	• •	
Confirmatory test:- Flame test		Ca ²⁺ is present
Above step residue or II part of the V		
group residue + a drop of	Brick red colored flame	
Con. HCl, flame test is conducted		
		Ca ²⁺ is confirmed

VI Group Basic Radicals

V Group centrifugate or original solution (if ammonium present or previous groups are absent) is divided into two unequal parts and tested as follows.

Test for Mg ²⁺ : Smaller part+solid NH ₄ Cl + Excess of liquor NH ₃ +10 drops of ammonium hydrogen Phosphate solution, shaken well.	White crystalline precipitate	Mg ²⁺ is confirmed
---	-------------------------------	-------------------------------

Ionic reaction: $Mg^{2+} + NH_4^+ + PO_4^{3-} \rightarrow Mg(NH_4)PO_4$ (White ppt) <u>Tests for Na⁺ and K⁺</u>: Larger part of the V group centrifugate or original solution+ 1-2 drops of con.HCl

and the solution is evaporated to dryness in a small porce- lain crucible with stirring till no more fumes are liberated and cooled. A part of this residue is preserved for flame test. The remaining part of the residue is dissolved in about 2ml of water. It is divided into two parts and tested as below.

Test for Na ⁺ :I part + alc.KOH ++10dropsofpotassiumpyro-		
antimonate solution, the inner sides of the test tube is scratched with	White precipitate	Na ⁺ is present
the help of a glass rod.		· ·
<u>Confirmatory test:- Flame test</u> Above step residue or II part of the		
evaporated solid extract + a drop of		
Con. HCl, flame test is conducted	Golden Yellow flame	Na^+ is confirmed
Test for K ⁺ : II part +10 drops of Picric acid solution, the inner sides of the test		
tube is scratched with the help of a		
glass rod.	Yellow crystalline	K^{+} is present
Confirmatory test:- Flame test Above step residue or II part of the	precipitate	
evaporated solid extract + a drop of		
Con. HCl, flame test is conducted.		
	Violet or lilac colored flame	K^{+} is confirmed

<u>Ionic reactions</u>: 1. $2Na^+ + Sb_2O_7^{4-} + 2H^+ \rightarrow Na_2H_2Sb_2O_7$ (White ppt.)

2. $K^+ + C_6H_2(NO_2)_3OH \rightarrow H^+ + C_6H_2(NO_2)_3O^-K^+$ (Yellow ppt.)

<u>Report:</u> The given salt mixture contains:

Acid radicals	
Basic radicals	

SYSTEMATIC SEMI-MICRO QUALITATIVE ANALYSIS OF A SALT MIXTURE CONTAINING TWO ACID AND <u>TWO BASIC RADICALS</u>

Model procedure for the given analysed salt

1. Preliminary Tests:i) State: Solid,ii) Appearance: Amorphousiii) Color: Colorlessiv) Solubility:Soluble in dil. HCl

2. Detection of Acid Radicals:

Experiment	Observation	Inference
Salt mixture + Dil.HCl	Brisk effervescence	I Group acid radi- cal is present
Nature of the evolved gas	Colorless odourless gas	
The vapours liberated gas is passed into a		CO_3^{2-} or HCO_3^{-}
test tube containg lime water	Lime water turns milky	is present.
Confirmatory test for CO3 ²⁻ /HCO3 ⁻		
Salt mixture + water, boiled, the		Carbonate(CO ₃ ²⁻)
liberated vapours are passed into a test	Lime water does not	is confirmed
tube containing lime water	turns milky	
		II Group acid
Salt mixture + Con. Sulphuric acid		radical is present
in a dry test tube.	Vigorous reaction	May be chloride
Color and nature of the gas	Colorless fuming gas	
A glass rod dipped in ammonium		Cl ⁻ is present
hydroxide is exposed to the out-comming		
gas.	Dense white fumes	
		Cl ⁻ is Confirmed
Confirmatory test for chloride:		
<u>(Chromyl chloride test)</u> :		
Salt Mix. + Potassium dichromate crystals		
are taken in a dry test tube + con. H_2SO_4		
the contents are heated, the red vapours	Bright yellow precipitate	
liberated are passed into a test tube		
containing water + NH_4OH + Acetic acid +		
Lead acetate, shaken well.		

3. Detection of Basic Radicals:

Experiment	Observation	Inference
TEST FOR AMMONIUM		
RADICAL(NH ₄ ⁺)		
5-10mg of the salt mixture + 1ml of	Pungent odoured gas	VI Group basic
NaOH solution, the contents of the test	is liberated	radical is present
tube is heated.		
A moist red litmus paper is exposed to		May be Ammonium
the out coming gas	Red litmus turns blue	radical
		Ammonium radical is
		present(NH 4 ⁺)

Confirmatory test-Nessler's reagent	Reddish brown precipitate	Ammonium is	
test: 10mg of the salt		Cofirmed(NH 4 ⁺)	
mixture + 1ml of sodium hydro-			
xide solution, boiled and the			
vapours are passed into a test tube			
containing Nessler's reagent			

Ionic Reaction: $NH_4^+ + 2[HgI_4]^{2^-} + 4OH^- \rightarrow HgO.Hg[NH_2]I + 7I^- + 3H_2O$ Red.brown ppt.

1 ml of the original solution + 1ml of dil HCl in excess	No white precipitate	I group basic radical is absent
About 1ml of original solution + dil HCl + H ₂ S gas is passed or thioacetamide solution dilute with 2-3 drops of water.	No precipitate	II group basic radicals is absent)
Original solution + solid NH ₄ Cl till saturated +excess of liquor ammonia till it smells sufficientl	No precipitate	III group basic radicals is absent

Original solution + Solid NH ₄ Cl + Excess of liquor ammonia soln.+ H ₂ S gas is passed or thioacetamide solution is added	No precipitate	IV Group basic radical is absent		
Original solution + Solid NH ₄ Cl + Excess of liquor ammonia soln + (NH ₄) ₂ CO ₃ solution.	No precipitate	V Group basic radical is absent		
Original solution is divided into two unequal parts and tested as follows.				
<u>Test for Mg²⁺:</u> Smaller part+solid NH ₄ Cl + Excess of liquor NH ₃ + <u>1</u> 0 drops of ammo- nium hydrogen Phosphate solution, shaken well.	No precipitate	Mg ²⁺ is absent		

Tests for Na⁺ and K⁺: Larger part of the Original solution+ 1-2 drops of con.HCl and the solution is evaporated to dryness in a small porcelain crucible with stirring till no more fumes are liberated and cooled. A part of this residue is preserved for flame test. The remaining part of the residue is dissolved in about 2 ml of water. The solution is divided into two parts and tested as below.

Test for Na ⁺ : part + alc.KOH + + 10 drops of potassium pyro-		
antimonate solution, the inner sides of	White precipitate	Na ⁺ is present
the test tube is scratched with the help of a glass rod.		
Confirmatory test:- Flame test	Golden Yellow flame	Na ⁺ is confirmed
Above step residue or II part of the		
evaporated solid extract + a drop of		
Con. HCl, flame test is conducted		

<u>Ionic reaction</u>: $2Na^+ + Sb_2O_7^{4-} + 2H^+ \rightarrow Na_2H_2Sb_2O_7$ (White ppt.)

Report:

The given salt mixture contains

Acid radicals	Carbonate (CO ₃ ²⁻)	Chloride(Cl ⁻)
Basic radicals	Ammonium(NH₄⁺)	Sodium(Na ⁺)

PROCEDURE WRITING EXPERIMENTS

<u>1.</u> SEPARATION OF Fe²⁺ AND Mg²⁺ FROM A MIXTURE BY SOLVENT EXTRACTION METHOD

Principle: Solvent extraction process is based on the Nernst distribution law

Partition coefficient (K) = <u>Concentration of solute in organic layer</u>

Concentration of solute in aqueous layer

Higher the partition coefficient more is the solubility of the solute in the organic layer. Chelate metal complex is more soluble in organic layer.

Procedure: The mixture containing Fe^{2+} and Mg^{2+} ions is treated with calculated quantity of H_2O_2 in the presence of dilute H_2SO_4 . Fe^{2+} is oxidized to Fe^{3+} . 50cm³ of this solution is taken in a separating funnel, and 10 cm³ of 1% oxine solution (8- hydroxy quinoline) in chloroform is added, maintaining the pH between 2-3. Only Fe^{3+} ions from a complex with oxine under these conditions, and this complex dissolves in the chloroform layer Mg^{2+} ions remain in the aqueous layer. The organic layer is removed from the separating funnel. The complex is now decomposed using HCl, and the Fe³⁺ ions are recovered. The aqueous layer is separated which mainly contains Mg^{2+} ions.

Note: K for the oxinate complex between CHCl₃ and water is about 720

2. ESTIMATION OF C.O.D IN THE GIVEN SAMPLE OF EFFLUENT

<u>Principle:</u> The amount of organic waste present in a sample of water is expressed in terms of C.O.D It is defined as the amount of oxygen in mg/L required to completely oxidize the oxidizable organic matter. Higher the C.O.D. more polluted is the water.

Procedure: 25 cm³ of the given effluent sample is taken in a round bottomed flask fitted with reflux condenser. 10 cm³ of 0.25N K₂Cr₂O₇ solution and a small quantity of solid HgSO₄ and Ag₂SO₄ are added to it. 20 cm³ of concentrated H₂SO₄ is then added .The resulting mixture is refluxed for about 2 hours. The contents of the flask are diluted with water and a few drops of ferroin indicator is added. The mixture is titrated with 0.1N Mohr's salt solution till the colour changes from blue to red.The titre value is noted(A) . A blank titration is carried out using 25 cm³ of distilled water instead of effluent . The blank titre value is also noted(B).

<u>Calculation:</u> Titre value for experimental solution = A

Blank titre value = B

Volume of Mohr's salt used by excess $K_2Cr_2O_7 = (B - A) \text{ cm}^3$

$$\begin{array}{rl} 1 N \ K_2 Cr_2 O_7 = 1 N \ FAS = 8g \ of \ oxygen \\ 1000 cm^3 \ of \ 1N \ FAS = 8000 mg \ of \ O_2 \\ (B-A) \ cm^3 = & \underline{B-A} \ x \ 8000 \ mg \ of \ O_2 \\ 1000 \\ V \ cm^3 \ of \ effluent \ = & 8 \ (B-A) \ mg \ of \ O_2 \\ 1000 \ cm^3 \ of \ effluent \ = & 8 \ (B-A) \ mg \ of \ O_2 \\ V \\ \hline C.O.D \ in \ mg/liter \ = & (\underline{B-A}) \ x \ 8000 N \\ 1000 \end{array}$$
 (N is the normality of FAS) 1000

<u>Result:</u> The C.O.D of the given sample is _____ mg.